SwissSuperLeague dataviz remix 1 - Points evolution

         · ·      · · · ·

This post is part of a dataviz remix series of the Swiss football league’s results. The motivations behind it are explained in this post.

Première mouture

Mon but ici, visualiser l’évolution des résultats des équipes. En comparaison avec le graphique officiel de la Swiss Football League ci-desssous, je suis plutôt satisfait.

J’apprécie de pouvoir constaster les passages à vide ou la constance de certaines équipes. Par exemple, le début de saison calamiteux du Lausanne Sport, suivi d’une jolie remontée.

Dataviz details

It is a small multiple chart of the cumulative points by round.

R code

## Data wrangle
f_pts <- ts %>% 
  filter(nmatch == max(nmatch)) %>%
  select(team, cum_pts, cum_balance) %>%
  rename(f_pts = cum_pts, f_balance = cum_balance)

tsf <- left_join(ts, f_pts)

# trick to display background data in all facets # https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2
ts.bg <- tsf %>% 
  mutate(team.ori = team) %>% 
  select(nmatch, cum_pts, team.ori, f_pts, f_balance)
ts.last <- tsf %>% 
  filter(nmatch == max(nmatch)) %>%
  mutate(
    xlab1 = 1.2, 
    ylab1 = max(cum_pts) -0.1, 
    xlab2 = nmatch -0.1,
    ylab2 = 1,
    stats = paste0(cum_pts, " pts | ", cum_scored, " : ", cum_against),
    ystart = 0
  )

nround <- max(tsf$nmatch)
aratio <- (nround / max(tsf$cum_pts)) / 1.25
  
## PLOT
gp <- ggplot(data = tsf) + 
  geom_step(data = ts.bg, 
            aes(x = nmatch, y = cum_pts, group = team.ori, colour = f_balance), 
            size = 0.25, alpha = 0.4) +
  geom_step(aes(x = nmatch, y = cum_pts, group = team, colour = f_balance), 
            size = 0.75, direction = "hv") +
   dqn_theme() + 
  facet_wrap(~team, ncol = 2, strip.position = "top") +
  theme(
    legend.position = "bottom",
    #plot.background = element_rect(fill = '#EFF2F4'),
    axis.ticks = element_line(size = 0.2),
    plot.margin = unit(c(0.4, 0.4, 0.1, -0.4), "cm"),
    strip.text = element_blank(),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank()
  ) + 
  scale_x_continuous(
    name = "", minor_breaks = NULL,
    breaks = scales::pretty_breaks(n = 5), expand = c(0,0),
    limits = c(1, nround + 0.4)) +
  scale_y_continuous(
    name = "", 
    breaks = scales::pretty_breaks(n = 3), expand = c(0,1)) +
  scale_color_viridis(option = "C", direction = -1, name = "Différence de buts") +
  labs(caption = "source: www.sfl.ch | dqn.website | CC-BY-NC-SA ", 
       title = "Swiss Super League - saison 2017/2018", 
       subtitle = paste0(
         "Points cumulés par tour. Mise à jour: tour " , 
         nround, " (", Sys.Date(), ")")
       ) +
  annotate("segment", x=-Inf, xend=Inf, y=-Inf, yend=-Inf, color = "#C2BABA") +
  annotate("segment", x=-Inf, xend=-Inf, y=-Inf, yend=Inf, color = "#C2BABA") +
  theme(aspect.ratio = aratio)

# add faceted text
gp2 <- gp + 
  geom_text(
    data = ts.last, aes(x = xlab1, y = ylab1, label = team), 
    hjust = 0, vjust = 1,
    size = 5.4,
    alpha = 0.75,
    family =  "Raleway") +
  geom_text(
      data = ts.last, aes(x = xlab2, y = ylab2, label = stats), 
      hjust = 1, vjust = 0,
      colour = "black",
      alpha = 0.9,
      size = 4.7,
      family =  "Raleway Light")
# add lollipop for the last game
  gp2 + 
    geom_point(data = ts.last, size = 2,
                   aes(x = nmatch, y = cum_pts, colour = f_balance)) +
    geom_segment(data = ts.last, 
                 aes(x = nmatch, xend = nmatch, y = ystart, yend = cum_pts, 
                     colour = f_balance),
                 alpha = 0.7, size = 0.25)
  

Trials

ggplot(data = ts) + 
  geom_step(aes(x = nmatch, y = cum_pts, group = team, colour = team), size = 1, alpha = 0.7) + dqn_theme()
Step chart withtout faceting and background data

Figure 1: Step chart withtout faceting and background data

ggplot(data = ts) + 
  geom_line(aes(x = nmatch, y = rank, group = team, colour = team), size = 1, alpha = 0.8) +
  dqn_theme()
Plotting rank over time should make sense right?

Figure 2: Plotting rank over time should make sense right?

ggplot(data = ts) + 
  geom_step(aes(x = nmatch, y = cum_pts, group = team, colour = rank), 
            size = 1, alpha = 0.7) +
  dqn_theme() + facet_wrap(~team, ncol = 2) +
  scale_x_continuous(
    name = "Tours", minor_breaks = NULL, 
    breaks = scales::pretty_breaks(n = 1), expand = c(0,0)) +
  scale_color_viridis()
Colour is encoded by the (continous) rank, unsure whether this is a useful feature

Figure 3: Colour is encoded by the (continous) rank, unsure whether this is a useful feature

comments powered by Disqus